Impact Assessment#
Impact Categories (Method
)#
How do I list the installed impact categories?#
sorted(bd.methods)
How do I test if a given impact category is installed?#
('<impact>', '<category>') in bd.methods
How can I get a random impact category?#
bd.methods.random()
How do I search for an impact category using list comprehensions?#
[
method for method in bd.methods
if 'ilcd 2.0' in method[0].lower()
and 'LT' not in method[2]
]
How do I see the data in a given impact category?#
my_method_object = bd.Method(('<impact>', '<category>'))
list(my_method_object)
How is the data in impact categories structured?#
Iterating over a Method
object yields tuples.
The first element in the tuple will be the biosphere
Node
The second element will be the characterization factor, either as a number, or as a dictionary which includes uncertainty information
There could be a third element, which gives the location for the characterization factor. This third element is not required.
How do I interpret the uncertainty dictionary?#
See the stats_arrays
documentation.
How do I create a new impact category?#
Start by defining characterization data following the tuple format defined in How is the data in impact categories structured?
:
import stats_arrays as sa
my_cf_data = [
(biosphere_node_1, 42),
(biosphere_node_1, 23, 'BR'),
(biosphere_node_2, {
'uncertainty_type': sa.TriangularUncertainty.id,
'amount': 7,
'loc': 7,
'maximum': 21
})
]
Then write the characterization factor to the Method
:
bd.Method(('<impact>', '<category>')).write(my_cf_data)
How do I see the impact category metadata?#
bd.Method(('<impact>', '<category>')).metadata
How do I change the impact category metadata?#
bd.Method(('<impact>', '<category>')).metadata['<some_key>'] = '<some_value>'