bw2data.backends.base#
Attributes#
Classes#
A base class for SQLite backends. |
Functions#
|
|
|
|
|
Module Contents#
- class bw2data.backends.base.SQLiteBackend(*args, **kwargs)[source]#
Bases:
bw2data.data_store.ProcessedDataStore
A base class for SQLite backends.
Subclasses must support at least the following calls:
load()
write(data)
In addition, they should specify their backend with the
backend
attribute (a unicode string).rename
copy
find_dependents
random
process
For new classes to be recognized by the
DatabaseChooser
, they need to be registered with theconfig
object, e.g.:config.backends['backend type string'] = BackendClass
Instantiation does not load any data. If this database is not yet registered in the metadata store, a warning is written to
stdout
.The data schema for databases in voluptuous is:
exchange = { Required("input"): valid_tuple, Required("type"): basestring, } exchange.update(uncertainty_dict) lci_dataset = { Optional("categories"): Any(list, tuple), Optional("location"): object, Optional("unit"): basestring, Optional("name"): basestring, Optional("type"): basestring, Optional("exchanges"): [exchange] } db_validator = Schema({valid_tuple: lci_dataset}, extra=True)
- where:
valid_tuple
is a dataset identifier, like("ecoinvent", "super strong steel")
uncertainty_fields
are fields from an uncertainty dictionary.
Processing a Database actually produces two parameter arrays: one for the exchanges, which make up the technosphere and biosphere matrices, and a geomapping array which links activities to locations.
- Parameters:
*name* (unicode string) – Name of the database to manage.
- _add_inventory_geomapping_to_datapackage(dp: bw_processing.Datapackage) None [source]#
Add the inventory geomapping array to an existing datapackage.
Separated out to allow for easier use in subclasses.
- _efficient_write_dataset(ds: dict, exchanges: list, activities: list, check_typos: bool = True)[source]#
- _efficient_write_many_data(data: list, indices: bool = True, check_typos: bool = True) None [source]#
- copy(name)[source]#
Make a copy of the database.
Internal links within the database will be updated to match the new database name, i.e.
("old name", "some id")
will be converted to("new name", "some id")
for all exchanges.- Parameters:
name (*) – Name of the new database. Must not already exist.
- delete(keep_params: bool = False, warn: bool = True, vacuum: bool = True, signal: bool = True)[source]#
Delete all data from SQLite database and search index
- delete_duplicate_exchanges(fields=['amount', 'type'])[source]#
Delete exchanges which are exact duplicates. Useful if you accidentally ran your input data notebook twice.
To determine uniqueness, we look at the exchange input and output nodes, and at the exchanges values for fields
fields
.
- edges_to_dataframe(categorical: bool = True, formatters: List[Callable] | None = None) pandas.DataFrame [source]#
Return a pandas DataFrame with all database exchanges. Standard DataFrame columns are:
target_id: int, target_database: str, target_code: str, target_name: Optional[str], target_reference_product: Optional[str], target_location: Optional[str], target_unit: Optional[str], target_type: Optional[str] source_id: int, source_database: str, source_code: str, source_name: Optional[str], source_product: Optional[str], # Note different label source_location: Optional[str], source_unit: Optional[str], source_categories: Optional[str] # Tuple concatenated with “::” as in bw2io edge_amount: float, edge_type: str,
Target is the node consuming the edge, source is the node or flow being consumed. The terms target and source were chosen because they also work well for biosphere edges.
Args:
categorical
will turn each string column in a pandas Categorical Series. This takes 1-2 extra seconds, but saves around 50% of the memory consumption.formatters
is a list of callables that modify each row. These functions must take the following keyword arguments, and use the Wurst internal data format:node
: The target node, as a dictedge
: The edge, including attributes of the source noderow
: The current row dict being modified.
The functions in
formatters
don’t need to return anything, they modifyrow
in place.Returns a pandas
DataFrame
.
- exchange_data_iterator(qs_func, dependents, flip=False)[source]#
Iterate over exchanges and format for
bw_processing
arrays.dependents
is a set of dependent database names.flip
means flip the numeric sign; seebw_processing
docs.Uses raw sqlite3 to retrieve data for ~2x speed boost.
- find_dependents(data=None, ignore=None)[source]#
Get sorted list of direct dependent databases (databases linked from exchanges).
- Parameters:
data (*) – Inventory data
ignore (*) – List of database names to ignore
- Returns:
List of database names
- find_graph_dependents()[source]#
Recursively get list of all dependent databases.
- Returns:
A set of database names
- load(*args, **kwargs)[source]#
Load the intermediate data for this object.
- Returns:
The intermediate data.
- nodes_to_dataframe(columns: List[str] | None = None, return_sorted: bool = True) pandas.DataFrame [source]#
Return a pandas DataFrame with all database nodes. Uses the provided node attributes by default, such as name, unit, location.
By default, returns a DataFrame sorted by name, reference product, location, and unit. Set
return_sorted
toFalse
to skip sorting.Specify
columns
to get custom columns. You will need to write your own function to get more customization, there are endless possibilities here.Returns a pandas
DataFrame
.
- process(csv=False)[source]#
Create structured arrays for the technosphere and biosphere matrices.
Uses
bw_processing
for array creation and metadata serialization.Also creates a
geomapping
array, linking activities to locations. Used for regionalized calculations.Use a raw SQLite3 cursor instead of Peewee for a ~2 times speed advantage.
- random(filters=True, true_random=False)[source]#
True random requires loading and sorting data in SQLite, and can be resource-intensive.
- register(write_empty=True, **kwargs)[source]#
Register a database with the metadata store.
Databases must be registered before data can be written.
- Writing data automatically sets the following metadata:
depends: Names of the databases that this database references, e.g. “biosphere”
number: Number of processes in this database.
- Parameters:
format (*) – Format that the database was converted from, e.g. “Ecospold”
- relabel_data(data: dict, old_name: str, new_name: str) dict [source]#
Relabel database keys and exchanges.
In a database which internally refer to the same database, update to new database name
new_name
.Needed to copy a database completely or cut out a section of a database.
For example:
data = { ("old and boring", 1): {"exchanges": [ {"input": ("old and boring", 42), "amount": 1.0}, ] }, ("old and boring", 2): {"exchanges": [ {"input": ("old and boring", 1), "amount": 4.0} ] } } print(relabel_database(data, "shiny new")) >> { ("shiny new", 1): {"exchanges": [ {"input": ("old and boring", 42), "amount": 1.0}, ] }, ("shiny new", 2): {"exchanges": [ {"input": ("shiny new", 1), "amount": 4.0} ] } }
In the example, the exchange to
("old and boring", 42)
does not change, as this is not part of the updated data.- Parameters:
data (*) – The data to modify
new_name (*) – The name of the modified database
- Returns:
The modified data
- rename(name)[source]#
Rename a database. Modifies exchanges to link to new name. Deregisters old database.
- Parameters:
name (*) – New name.
- Returns:
New
Database
object.
- search(string, **kwargs)[source]#
Search this database for
string
.The searcher include the following fields:
name
comment
categories
location
reference product
string
can include wild cards, e.g."trans*"
.By default, the
name
field is given the most weight. The full weighting set is called theboost
dictionary, and the default weights are:{ "name": 5, "comment": 1, "product": 3, "categories": 2, "location": 3 }
Optional keyword arguments:
limit
: Number of results to return.boosts
: Dictionary of field names and numeric boosts - see default boost values above. New values must be in the same format, but with different weights.filter
: Dictionary of criteria that search results must meet, e.g.{'categories': 'air'}
. Keys must be one of the above fields.mask
: Dictionary of criteria that exclude search results. Same format asfilter
.facet
: Field to facet results. Must be one ofname
,product
,categories
,location
, ordatabase
.proxy
: ReturnActivity
proxies instead of dictionary index Models. Default isTrue
.
Returns a list of
Activity
datasets.
- set_geocollections()[source]#
Set
geocollections
attribute for databases which don’t currently have it.
- write(data: dict | list, process: bool = True, searchable: bool = True, check_typos: bool = True, signal: bool | None = None)[source]#
Write
data
to database.data
must be a dictionary of the form:{ ('database name', 'dataset code'): {dataset} }
Writing a database will first deletes all existing data.